A thin-film solar cell is a second generation solar cell that is made by depositing one or more thin layers, or thin film (TF) of photovoltaic material on a substrate, such as glass, plastic or metal. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).
A Plasmonic solar cell is a type of thin film solar cell that converts light into electricity with the assistance of plasmons.[1] They are typically less than 2 μm thick and theoretically could be as thin as 100 nm.[2] They can use substrates which are cheaper than silicon, such as glass, plastic or steel. One of the challenges for thin film solar cells is that they do not absorb as much light as thicker solar cells made with materials with the same absorption coefficient. Methods for light trapping are important for thin film solar cells.[3] Plasmonic cells improve absorption by scattering light using metal nano-particles excited at their surface plasmon resonance.[4] This allows light to be absorbed more directly without the relatively thick absorber layer required in other types of thin-film solar cells. However, this type of solar cell also normally demands a thin transparent conducting oxide (TCO) to function for realistic photovoltaic absorber thicknesses and only recently have methods been advanced that allow high conductivity while maintaining high optical transmission of the TCO.[5] There is still considerable research necessary to enable the technology to reach its full potential and commercialization of plasmonic enhanced solar cells.[2]
Nanocrystal solar cells are solar cells based on a substrate with a coating of nanocrystals. The nanocrystals are typically based on silicon, CdTe or CIGS and the substrates are generally silicon or various organic conductors. Quantum dot solar cells are a variant of this approach, but take advantage of quantum mechanical effects to extract further performance. Dye-sensitized solar cells are another related approach, but in this case the nano-structuring is part of the substrate.